The available database comprises research projects in Fisheries, Aquaculture, Seafood Processing and Marine Biotechnology active in the time period 2003-2022.
BlueBio is an ERA-NET COFUND created to directly identify new and improve existing ways of bringing bio-based products and services to the market and find new ways of creating value from in the blue bioeconomy.

More information on the BlueBio project and participating funding organizations is available on the BlueBio website: www.bluebioeconomy.eu

Last Update: 2024/06/19

NEUROBASS
Aquaculture
Acquiring competencies in neuroendocrinology by an aquaculture researcher through investigating gonadotropin-inhibitory hormone & kisspeptin as mediators between environmental cues & fish reproduction
FP7
FP7 - Intra-European Fellowships (IEF)
PEOPLE – Marie Curie Actions
People
European
José A. Muñoz-Cueto
munoz.cueto@uca.es
UCA - University of Cadiz (Spain)
NA
2013
2015
€ 166,336
https://cordis.europa.eu/project/id/331964
The purpose of NeuroBass is to develop an aquaculture researchers career as a principal investigator of the fundamental study of reproduction for the applied optimisation of rearing environment and the resolution of reproductive bottlenecks for commercially important fish species. This detailed knowledge is urgently required and is essential for promoting the sustainability of European aquaculture. The project has been designed by the researcher (Institute of Aquaculture, Scotland), in liaison with the host (the world leading functional neuroendocrinology lab at the University of Cadiz, Spain), to gain new, state-of-the-art experience, competencies and skills in neuroanatomy and neuroendocrinology. Techniques will include in situ hybridization, immunohistochemistry, laser capture microdissection, RT-PCR, along with a physiological analysis. This cutting edge training will be achieved by means of a study to elucidate the chain of connection between environmental cues and the classical endocrine axis of reproduction in the European sea bass, Dicentrarchus labrax. It is hypothesised that two recently discovered neuropeptide systems, Gonadotropin-inhibitory Hormone (GnIH) and Kisspeptin, act as mediators of the effects of environmental factors, in particular light, on the neuroendocrine and endocrine systems governing reproduction. To examine this hypothesis, NeuroBass is divided into two research sub-projects. Sub-Project 1 is aimed at investigating the potential interaction of the environmental synchroniser, light, and its transducer neurohormone, melatonin, with the GnIH and kisspeptin neuroendocrine systems in sea bass. Sub-Project 2 is aimed at investigating the potential interaction of the two newly-discovered systems with downstream neuroendocrine and endocrine control of reproduction in sea bass. The result of NeuroBass will be to produce a competent researcher with a practical synergy of expertise both in aquaculture and in functional neuroendocrinology.
Seabass; Fish biology; Fish; Fish reproduction;
Not associated to marine areas
map png
If there is any incorrect or missing information on this project please access here or contact bluebio.database@irbim.cnr.it
/* */