The available database comprises research projects in Fisheries, Aquaculture, Seafood Processing and Marine Biotechnology active in the time period 2003-2022.
BlueBio is an ERA-NET COFUND created to directly identify new and improve existing ways of bringing bio-based products and services to the market and find new ways of creating value from in the blue bioeconomy.

More information on the BlueBio project and participating funding organizations is available on the BlueBio website: www.bluebioeconomy.eu

Last Update: 2024/06/19

NA
Fisheries
Food safety and added value of Icelandic fishmeal – Determination of toxic and non‐toxic arsenic species in fish meal
National Programme
National
Ásta Heiðrún E. Pétursdóttir
asta.h.petursdottir@matis.is
MATIS - Matis Ltd (Iceland)
NA - University of Bayreuth (Germany)
2008
2010
€ NA
https://matis.is/wp-content/uploads/skyrslur/45-10-Arsenic-in-Icelandic-fishmeakl.pdf
Arsenic is found in the biosphere both in organic and inorganic forms, and there have been recognized more than 50 naturally occurring arsenic species. Seafood products have naturally high concentration of total arsenic compared to e.g. agricultural produce. Arsenic is toxic to humans and animals and is known to be carcinogenic. The toxicity of the arsenic species varies severely and a large portion of the arsenic in seafood is present in the form of the organic compound arsenobetaine, which is considered non‐toxic. Other arsenic species are generally present in lower concentrations, including the most toxic inorganic arsenic species, arsenite, As(III) and arsenate, As(V), which usually do not exceed 3% of the total arsenic in fish and crustaceans. Existent European regulations on limits of arsenic in foodstuff and feed only take into account total arsenic concentration, not the toxic arsenic species. Recently the EFSA (European Food Safety Authority) stressed the need for more data on levels of organic and inorganic arsenic in different foodstuffs and the need for robust validated analytical methods for the determination of inorganic arsenic. In this thesis results from total arsenic concentration from over 100 samples of Icelandic fish meal are presented and evaluated. The samples were microwave digested and measured with inductively coupled plasma mass spectrometry (ICP‐MS). The samples were screened for a seasonal difference in the total arsenic concentration. To evaluate the arsenic species present in the meal a sequential method of extraction was developed. In addition, a special focus was on the determination of inorganic arsenic and a previously published method for an alkaline‐alcoholic extraction of the inorganic arsenic was modified and applied. For determination of arsenic species high pressure liquid chromatography (HPLC) was coupled to the ICP‐MS. The predominant arsenic species found in all samples was the non‐toxic arsenobetaine. Inorganic arsenic was found not to exceed 4% of total arsenic concentration in 12 samples of fish meal. However, a suspicion of co‐elution arose, and when another analytical instrument technique (Hydride generation atomic fluorescence spectroscopy (HPLC‐HG‐AFS)) was applied, concentration of inorganic arsenic was approximately three times lower in a certified reference material, TORT‐2. The alkaline‐alcoholic extraction method was found to give convincing upper limits of the inorganic arsenic concentration in fish meal samples. These results show the necessity of further method development and separate methods when identifying and quantifying species. This furthermore stresses the need for a certified value of inorganic arsenic in a certified material to check the robustness of developed methods.
Impacts; Blue whiting; Fish products; Toxic substances; Herring; Fish; Food safety;
Not associated to marine areas
map png
If there is any incorrect or missing information on this project please access here or contact bluebio.database@irbim.cnr.it
/* */